

Accelerator Program Overview

Steve Holmes Fermilab March 16, 2004

Outline

- Role, Mission, and Responsibilities
- Program, Current and Future
- Resources
- Programmatic Risks
- Planning and Priorities

Role

- The Associate Director for Accelerators provides line management oversight for the <u>Accelerator and Technical Divisions</u>
- Role of the Associate Directors:
 - Establish laboratory goals (within the Directorate)
 - Establish Division goals in concert with laboratory goals (and in consultation with the Division Heads)
 - Assign resources in the Divisions sufficient to achieve goals
 - Assist the Divisions in achieving goals
 - Advocate for the Divisions within the Directorate
 - Advocate for Directorate within the Divisions
 - External communications

Mission

- The missions of the Accelerator and Technical Divisions include:
 - Maintenance and operation of the accelerator complex in support of the HEP research program.
 - Improvement of accelerator performance to meet established goals.
 - R&D in accelerator technologies aimed at next generation HEP facilities and beyond
 - Construction of new accelerator facilities
 - Technical component fabrication, magnet measurement, and machine shop support of laboratory projects

Mission

- 7 miles of accelerators
- 5 miles of beamlines
- -800 people
- 44 weeks of operation a year (nominal)
- 2.0 TeV protonantiproton collisions

Fermilab's ACCELERATOR CHAIN

Responsibilities

Associate Director

- The Associate Director holds oversight responsibility for successful execution of the Accelerator and Technical Division missions
 - A close working relationship with the division heads is essential

Division Heads

- The Division Heads are responsible for successful execution of their missions
 - Deployment of resources are controlled at the division level
 - (Note: The AD for Accelerators directly controls only one account, budgeted at <\$100K)

Programs in Support of the Present Mission

- Run II Collider Program
 - Operations, maintenance, and upgrades
- MiniBoone beam operations
- 120 GeV test beam and experiment operations
- NuMI construction project
- BTev IR design
- LHC accelerator construction project
- Future accelerator R&D
 - Linear collider
 - Proton Driver
 - Superconducting magnet
 - Advanced accelerator (photoinjector lab)
 - Muon facilities

Programs in Support of the Future Mission

- Run II Collider Program
- MiniBoone beam operations
- NuMI/MINOS beam operations
- 120 GeV test beam and experiment operations
- BTev construction and operations
- Future accelerators
 - Linear collider R&D (and construction?)
 - Proton Driver R&D (and construction?)
 - LHC accelerator research program
 - Superconducting magnet R&D
 - Advanced accelerator R&D
 - Muon facilities R&D

Resources in Support of the Mission

Staff

- Accelerator Division = 580
- Technical Division = 230
- The planned program for the coming decade requires maintenance at this level

Budgets

Accelerator Division =	\$95,276M
Technical Division =	\$26,498M
Sum =	\$121,774M

Resources in Support of the Mission/AD Budget

Table 1: FY04 budget by major activities

DS - ACCELERATOR DIVISION	Labor	M&S	total
Run 2			
Accelerator Operation	35,562.0	11,847.0	47,409.0
Accelerator Improvement	6,542.0	14,039.0	20,581.0
Detector Operation	0.0	0.0	0.0
Detector Improvement	0.0	0.0	0.0
Non-Run 2			
Accelerator Operation	3,515.0	2,049.0	5,564.0
Accelerator Improvement	0.0	0.0	0.0
Detector Operation	0.0	0.0	0.0
Detector Improvement	0.0	0.0	0.0
Others			
LHC	0.0	0.0	0.0
Non-accelerator physics	0.0	0.0	0.0
Theory	0.0	0.0	0.0
Physics Research	0.0	0.0	0.0
NuMI Line Item	1,484.0	9,880.0	11,364.0
Future Accelerator R&D	462.0	1,010.0	1,472.0
Future Detector R&D	0.0	15.0	15.0
Direct	6,313.0	2,558.0	8,871.0
Indirect	0.0	0.0	0.0
Total	53,878.0	41,398.0	95,276.0

Resources in Support of the Mission/TD Budget

Table 1: FY04 budget by major activities

DS - TECHNICAL DIVISION	Labor	M&S	total
Run 2			
Accelerator Operation	3,194.7	570.0	3,764.7
Accelerator Improvement	1,960.0	70.0	2,030.0
Detector Operation	0.0	0.0	0.0
Detector Improvement	0.0	0.0	0.0
Non-Run 2			
Accelerator Operation	15.0	0.0	15.0
Accelerator Improvement	0.0	0.0	0.0
Detector Operation	0.0	0.0	0.0
Detector Improvement	0.0	0.0	0.0
Others			
LHC	2,038.8	376.0	2,414.8
Non-accelerator physics	711.7	3,089.0	3,800.7
Theory	0.0	0.0	0.0
Physics Research	0.0	0.0	0.0
NuMI Line Item	0.0	0.0	0.0
Future Accelerator R&D	4,569.3	2,625.0	7,194.3
Future Detector R&D	816.0	0.0	816.0
Direct	4,455.1	2,007.0	6,462.1
Indirect	0.0	0.0	0.0
Total	17,760.6	8,737.0	26,497.6

- Accelerator Operations:
 - The existing accelerator complex is being counted on to support operations at or beyond the highest performance levels in history, through at least 2012.
 - Risk elements
 - Reliability of aging accelerators
 - Linac and Booster are the most serious
 - Technical challenges in the Run II Upgrades
 - Electron cooling
 - Stack-tail upgrade
 - Etc.

- Accelerator Operations:
 - Risk elements (cont)
 - Proton demand for Run II+MiniBoone+NuMI
 - Requires at least doubling the current throughput of the Linac and Booster
 - Pressure to operate MiniBoone in parallel with NuMI
 - Institutional knowledge base
 - With people carrying years of accumulated knowledge nearing retirement

Mitigation

- Reliability
 - Formally assigned to the Accelerator Division Associate Head for Engineering
 - Stockpiling of spares
 - Potential need for a linac front end replacement (\$30-50M) looms on the horizon
- Technical challenges in the Run II Upgrades
 - Complete mockup of electron cooling facility in Wideband Lab prior to Recycler installation
 - Complete simulation of the stack-tail upgrade, benchmarked against machine studies

- Mitigation (cont)
 - Proton demand
 - "Proton Plan" in preparation
 - Similar in spirit and approach to the Run II Upgrade
 Plan
 - Institutional knowledge base
 - Target critical areas as preferred hiring areas
 - rf and high power engineering, accelerator scientists...
 - Discussing creation of an engineering fellowship program modeled after Wilson and Peoples Fellows

- Current Projects (NuMI and LHC Accelerator)
 - No unusual risks beyond those typically associated with construction projects: completion of a defined technical scope, on time and on budget.
- Future Projects and Facilities
 - Allocation of sufficient resources to achieve goals.
 - Mitigation
 - Capture roll-off of NuMI and Run II Upgrade resources
 - Establish plan for the future consistent with anticipated resources

Planning and Priorities

Philosophy

- In general, the need to set priorities is a reflection that resources are not matched to goals.
 - Prioritization should not be viewed as a substitute for good planning.
 - It is much better to establish plans that match resources with goals, and then execute the plan!
- However, this is not the world we operate in.
 - Projects take many years to complete
 - Anticipated funding levels can fail to materialize
 - Unanticipated conditions can cause one to fall short of the plan and/or require resources beyond those originally anticipated.

Planning

- The Directorate has responsibility for setting the direction of the laboratory.
 - Advice, communication, and input from critical stakeholders is essential.
 - Users, AD and TD Heads, DOE, HEP community, accelerator physics community are major stakeholders from accelerator point of view.
 - The primary advice mechanisms are:
 - Physics Advisory Committee
 - Accelerator Advisory Committee
 - Scientific Advisory Group (internal)

Planning

Accelerator Advisory Committee Membership

J-P. Koutchouk/CERN

S. Kurokawa/KEK

S. Milton/ANL

M. Minty/DESY

S. Peggs/BNL

J. Rogers/Cornell

T. Roser/BNL (chair)

L. Rossi/CERN

R. Ruth/SLAC

A. Zholents/LBNL

Meets twice annually

Managing the Plan

- Once a plan is established it has to be communicated and managed
 - The primary management and communications mechanisms are:
 - Run II Program Management Group
 - Weekly Users' Meeting
 - Weekly Scientific Directors Meeting
 - Weekly AD/TD meeting
 - Biweekly teleconference with DOE
 - Peer review mechanisms
 - Director's, DOE, and internal reviews

Priorities

Setting priorities

- Establishing priorities is part of managing the plan.
- The same mechanisms described above are used for setting priorities once resources and the plan get out of alignment.

Priorities

- The current view of the priorities for AD and TD are:
 - Run II operations
 - Run II upgrades
 - NuMI and LHC construction projects
 - MiniBoone operations
 - BTev planning
 - Linear Collider and Proton Driver R&D
 - Everything else

Summary

- The Accelerator and Technical Division missions are critical to the laboratory's present and future.
- Managing the myriad activities with the resources available in these organizations is a challenge.
- So far we are meeting the challenge, but it is hard to envision things getting any easier.
- Details from Roger and Bob